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Abstract

Domes have become increasingly popular in modern building designs. Glazed domes are used to bring daylight and

solar heat into the indoor space. For domes with multiple spaced layers of glazings, there is little information available

on natural convection heat transfer within these layers. This information is required for the evaluation of the dome

thermal performance (e.g., the U-factor). This paper presents a numerical study on heat transfer by laminar natural

convection within multi-layer domes with uniform spacing heated from the outside. The ¯ow and temperature ®elds

within the domed enclosure were obtained using the control volume approach combined with the fully implicit scheme.

Correlations for the heat transfer as a function of the dome shape and the gap spacing between the layers were de-

veloped under steady-state conditions. The results showed that the convection heat transfer for fully hemispheric domes

(half of spheres) may reach more than 13% higher than that for low pro®le domes (hemispherical caps) for small gap

spacings (gap spacing-to-radius ratio d < 0:1) and more than 100% for large gap spacings (d > 0:3). The critical gap

spacing that yields the maximum heat transfer was quanti®ed for each dome shape. Crown Copyright Ó 2001 Pub-

lished by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Domes have become increasingly popular in modern

building design and in retro®tted buildings. In com-

mercial and institutional buildings, glazed domes are

used to simulate the outdoors and to bring natural light

and solar heat into the indoor space. In other applica-

tions (e.g., houses), glazed domes are used mainly for

illumination. To reduce the building thermal loads,

domes are manufactured with a number of layers

forming enclosed spaces ®lled with a gas. These enclosed

spaces are subject to a buoyancy-induced ¯ow, which in

turn will a�ect positively or negatively the heat transfer

between the dome and the surrounding environment.

Therefore, predicting the dome thermal performance is

strictly dependent on the nature and intensity of the

buoyancy-induced ¯ow within the enclosure.

In fenestration applications, extensive theoretical and

experimental investigations on natural convection heat

transfer in cavities have been devoted to planar

geometries such as windows, curtain walls and ¯at

skylights. However, there is little information available

on heat transfer within domed/curved cavities. ASH-

RAE [1] procedure for the calculation of the convec-

tion heat transfer of domes uses the correlations

developed for rectangular cavities at the equivalent

mean slope. The extent of error of such a practice has

not thoroughly been tested. McGowan et al. [2] have

recently tested and simulated pyramidal and barrel

vault skylights. They used CFD modelling to predict

the convection heat transfer for a trapezoidal inclined

cavity and a curved (cylindrical) cavity, and they

compared the CFD predictions with the correlations

for rectangular cavities at the equivalent mean slope.

McGowan et al. [2] found that the correlations for

rectangular cavities overestimate the convection heat

transfer by 29% (winter conditions) and 14% (summer

conditions) for the curved cavities, and by less than

15% for inclined trapezoidal cavities as compared with
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the CFD results. However, this di�erence in heat

transfer estimation translates into an error of less than

8% in the overall U-factor of the fenestration system.

Therefore, McGowan et al. [2] concluded that the

convective heat transfer in curved or trapezoidal cavity

can be approximated using the correlations for ¯at

rectangular cavities at the equivalent mean slope of the

complex cavity. It should be pointed out that the

conclusion drawn from their study is limited to fairly

small Rayleigh numbers �Ra� 7� 104�. Therefore,

their results cannot be generalised to higher Rayleigh

numbers and to other geometry types.

Prediction of heat transfer in domed cavities has

been very di�cult due to the complex ¯ow pattern,

which varies with the geometry parameters and the

boundary conditions. Experimental studies and ¯ow

visualisation conducted on natural convection within

concentric isothermal spheres (similar geometry as

domes) showed that the ¯ow pattern is mono-cellular

for large gap spacings when the inner sphere is hotter

than the outer one [3±5]. A large cell extends from the

bottom to the top of the spheres. This type of ¯ow

may reach the steady-state conditions. However, the

¯ow pattern is multicellular for small gap spacings.

The ¯ow pattern consists of a large cell, which extends

from the lower vertical axis to the upper half of the

spheres and an odd number of counter-rotating cells,

which appear and then disappear periodically at the

top of the spheres. This type of ¯ow is unsteady and

periodic. This ¯ow will substantially increase the heat

transfer to the surrounding, which is not desirable in

dome applications in buildings. Numerical studies to

back up the experimental investigations have been very

few and are limited to large gap spacings. Grag [6]

investigated the ¯ow pattern between concentric

isothermal spheres with diameter ratio of 2. Garg [6]

used the vorticity±stream-function formulation and a

®nite di�erence method to obtain the ¯ow and tem-

perature ®elds. Chiu and Chen [7,8] applied the same

numerical method as Garg [6] did to natural convec-

tion between concentric and vertically eccentric spheres

under isothermal and mixed boundary conditions.

Nomenclature

Ae surface area of the control volume face e

An surface area of the control volume face n

As surface area of the control volume face s

Aw surface area of the control volume face w

Ai surface area of the interior dome wall

Ao surface area of the exterior dome wall

aP discretisation coe�cient of the grid point P

ae discretisation coe�cient of the grid point e

an discretisation coe�cient of the grid point n

anb discretisation coe�cient of a neighbouring

grid point

c, d correlation coe�cient and exponent for

Nusselt number, Eq. (26)

Gr Grashof number, Gr � gb�To ÿ Ti�L3=m2

g gravitational acceleration (9.81 m/s2)

hc convection ®lm coe�cient of the domed

enclosure

K ¯uid thermal conductivity

L gap spacing between the dome layers �Ro ÿ Ri�
Nui Nusselt number at the inner dome wall

Nuo Nusselt number at the outer dome wall

P pressure

p dimensionless pressure

Pr Prandtl number, Pr � m/a
qi heat transfer ¯ux at the interior dome wall

qcond heat transfer ¯ux by pure conduction through

the domed enclosure

qo heat transfer ¯ux at the exterior dome wall

R position radius

r dimensionless position radius

Ri interior dome radius

Ro exterior dome radius

Ra Rayleigh number (Ra � GráPr)

Ra� modi®ed Rayleigh number, Eq. (25)

Sr, Sh momentum source terms, Eqs. (8) and (9)

T temperature

Ti temperature of the inner dome wall

To temperature of the outer dome wall

t time

U, V velocity components in the h- and R-directions

u, v dimensionless velocity components in the

h- and r-directions

u0, v0 values of u and v at previous time step

vol volume of the control volume

Dr radius di�erential across the control volume

Greek symbols

a ¯uid thermal di�usivity

b ¯uid thermal expansion coe�cient

d dimensionless gap spacing between dome

layers (d � L/Ri)

U dimensionless temperature,

U � �T ÿ Ti�=�To ÿ Ti�
U0 values of U at previous time step

m ¯uid cinematic viscosity

h position angle

h0 dome truncation angle

q ¯uid density evaluated at T

qi ¯uid density evaluated at Ti

s dimensionless time

Ds dimensionless time step

Dh angle di�erential across the control volume
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Again, a large diameter ratio of 2 was used in their

con®guration.

The present study addresses natural convection heat

transfer in domed cavities. The main objectives are to

investigate the ¯ow pattern within domed enclosure and

to develop practical correlations for the heat transfer as

a function of the dome shape and the gap spacing under

steady-state conditions. The correlations may be used in

fenestration computer programs to predict the thermal

performance of domed structures.

2. Mathematical formulation

A dome is a hemispherical cup de®ned by its radius

and truncation angle. A dome may consist of a number

of hemispherical layers separated by a gap ®lled by a

gaseous material to reduce heat loss and/or gain. De-

termining the heat loss/gain through the dome structure

requires knowing the heat transfer by convection

through the gap between the layers. If the temperature

of the layers is uniform, the problem may be reduced to

solving only the convection heat transfer though the gap

between two consecutive layers.

Consider now a double-layer dome with interior and

exterior radii Ri and Ro, respectively. The spacing be-

tween the layers is uniform and designated as L. The

dome is truncated at an angle h0. The truncation angle

may vary from 0° to 180°. The case h0 � 0° corresponds

to concentric disks, 0°< h0 < 90° to low-pro®le domes,

h0 � 90° to fully hemispherical domes and h0 � 180° to

concentric spheres. The interior dome wall is maintained

at a uniform temperature Ti and the exterior one at To.

The edges of the enclosed space between the layers are

sealed and adiabatic. Owing to the thermal potential

�To ÿ Ti�, a buoyancy-driven ¯ow emerges within the

enclosure. The ¯uid near the hot wall rises up and the

one near the cold wall moves down. The ¯ow is con-

sidered to be two-dimensional since this con®guration is

symmetrical with respect to the vertical axis (revolution

axis). Only half of the dome is, therefore, considered for

the calculation. Fig. 1 shows a schematic representation

of a double-layer dome.

The following assumptions are used:

1. The ¯uid is incompressible.

2. The buoyancy-driven ¯ow within the enclosure is

laminar.

3. The physical properties of the ¯uid are constant, ex-

cept the density in the body force terms.

4. The ¯uid density is given by BoussinesqÕs approxima-

tion.

5. The compression work and the viscous dissipation

energy are neglected.

Using BoussinesqÕs approximation, the ¯uid density is

expressed as follows:

q � qi 1� ÿ b�T ÿ Ti��: �1�

The laminar, buoyancy-driven ¯ow is governed by the

Navier±Stokes equations. To obtain general solutions

for the ¯ow and temperature ®elds, the governing

equations are non-dimensionalised according to the

following dimensionless variables:

r � R=L; s � t=�L2=m�; u � U=�m=L�; v � V =�m=L�;
p � �P � qigR cosh�=qi�m=L�2; U � �T ÿ Ti�=�To ÿ Ti�:

�2�
The dimensionless transient Navier±Stokes equations in

spherical co-ordinates read as follows [9]:

Mass balance:

1

r2

o
or
�r2v� � 1

r sinh
o
oh
�u sinh� � 0: �3�

Momentum balance: r-direction

ov
os
� v

ov
or
� u

r
ov
oh
� ÿ op

or
�r2v� Sr: �4�

Momentum balance: h-direction

ou
os
� v

ou
or
� u

r
ou
oh
� ÿ 1

r
op
oh
�r2u� Sh: �5�

Energy balance:

oU
os
� v

oU
or
� u

r
oU
oh
� 1

Pr
r2U; �6�

where r2 is the Laplace operator, and Sr and Sh source

terms. These are given by:

r2 � 1

r2

o
or

r2 o
or

� �
� 1

r2 sinh
o
oh

sinh
o
oh

� �
; �7�

Sr � Gr � U � cosh� 1

r
u2 ÿ 2

v
r2
ÿ 2

r2

ou
oh
ÿ 2

u
r2

coth; �8�

Fig. 1. Schematic representation a double-layer dome.
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Sh � ÿGr � U � sinhÿ 1

r
uv� 2

r2

ov
oh
ÿ u

�r sinh�2 : �9�

3. Boundary conditions

Eqs. (3)±(6) are subject to the no-slip and uniform

temperature conditions at the dome walls, and to the

symmetry and adiabatic conditions at the axis of rev-

olution and the edges, respectively. The boundary

conditions in dimensionless forms are translated as

follows:

r � 1=d; u � v � U � 0; �10�

r � 1� 1=d; u � v � 0; U � 1; �11�

h � 0; u � ov
oh
� oU

oh
� 0; �12�

h � h0; u � v � oU
oh
� 0: �13�

The initial conditions are that the ¯uid is quiescent and

heat transfer is by pure conduction.

The governing equations and the boundary conditions

show that the ¯ow within the enclosure is governed by

four dimensionless parameters, namely the Grashof

number (Gr), the Prandtl number (Pr), the dimensionless

gap spacing (d), and the truncation angle h0.

4. Evaluation of heat transfer

The dome exchanges heat with the surrounding en-

vironment through its interior and exterior walls. The

heat transfer at the interior and exterior walls is evalu-

ated as follows:

qi � ÿ2pR2
i K
Z h0

0

oT
oR

����
R�Ri

sinh dh; �14�

qo � ÿ2pR2
oK
Z h0

0

oT
oR

����
R�Ro

sinh dh: �15�

At steady-state conditions, the heat transfer at the in-

terior wall must be equal to that at the exterior wall

(qi � qo � q).

The Nusselt numbers at the interior and exterior walls

are de®ned as follows:

Nui � qi

qcond

� 1=�1� d�
1ÿ cosh0

Z h0

0

oU
or

����
r�1=d

sinh dh; �16�

Nuo � qo

qcond

� 1� d
1ÿ cosh0

Z h0

0

oU
or

����
r�1�1=d

sinh dh: �17�

Under steady-state conditions, Nui � Nuo � Nu. Under

these conditions, it is practical to compute the convec-

tion ®lm coe�cient, which is useful for the calculation of

the overall thermal conductance of the dome structure.

The convection heat transfer from the exterior wall to

the interior one may be expressed as follows:

q � 0:5�Ao � Ai�hc�To ÿ Ti�: �18�

Taking into account Eq. (16) or (17), the convection ®lm

coe�cient is expressed as follows:

hc � 1 1

��
ÿ d2

4�1� d�
�
� NuK

L
: �19�

5. Numerical procedure

The governing equations (3)±(6) are discretised using

the fully implicit scheme and the control volume ap-

proach. The time derivatives are discretised using for-

ward di�erentiation and the space derivatives using the

power-law scheme [10]. Two grids are employed, pri-

mary and staggered grids. Temperature and pressure are

calculated at the primary grid nodes and the velocity

components are calculated at the staggered grid nodes.

While the problem is two-dimensional, the three-

dimensional aspect of the geometry is taken into account

for the evaluation of the control volume surface areas.

Fig. 2 shows a typical three-dimensional control volume

of a primary grid node P. The discretised forms of

Eqs. (3)±(6) read as follows:

ue � Ae ÿ uw � Aw � vn � An ÿ vs � As � 0; �20�

anvn �
X

nb

anbvnb � �pP ÿ pN �An

� �Sr � v0
n=Ds�voln; �21�

Fig. 2. Three-dimensional control volume of a primary grid

node P.
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aeue �
X

nb

anbunb � �pP ÿ pE�Ae

� �Sh � u0
e=Ds�vole; �22�

aP UP �
X

nb

anbUnb � �U0
P=Ds�volP : �23�

Details on the evaluation of the discretisation coe�cient

(aP , ae, an, and anb) may be found in [10].

The SIMPLER method [10] is used to solve for the

pressure and velocity ®elds. The discretised equations

(21)±(23) are then solved using the three-diagonal-ma-

trix algorithm (TDMA) combined with the line-by-line

method. Convergence of the numerical procedure is

declared when the maximum mass residual of Eq. (20) in

a control volume is less than a speci®ed tolerance (10ÿ7).

6. Validation of the numerical procedure

The results obtained using the present numerical

model are compared with those published in the litera-

ture about concentric spheres by Raithby and Hollands

[11] and Garg [6]. Raithby and Hollands [11] employed

the boundary conduction layer method to develop a

correlation for the Nusselt number under steady-state

conditions. The correlation is expressed as follows:

Nu � max 1; c�Ra��1=4
n o

; �24�

where c is a coe�cient and Ra� a modi®ed Rayleigh

number. These are given by the following expressions:

Ra� � Ra�d=2�
�1� d�ÿ3=5 � �1� d�4=5
n o5

;

c � 0:74 Pr=�0:861f � Pr�g1=4
: �25�

The value of the coe�cient c was calculated based on the

experimental data of Bishop et al. [3].

Garg [6] obtained the ¯ow and temperature ®elds

between concentric spheres using the vorticity±stream-

function formulation and a ®nite-di�erence numerical

method.

Table 1 compares the values of the steady-state Nus-

selt numbers predicted by the present model, Garg [6],

and using Eq. (24) for h0 � 180°, d � 1, and Pr � 0.7

(air) and 6 (water). The interior sphere is assumed hotter

than the exterior one �To ÿ Ti < 0�. For this case, the

¯ow reaches the steady-state conditions independently

of the initial conditions. A non-uniform grid of 51� 51

nodes along the radial and circumferencial directions,

respectively, is used for Pr � 0.7, and a grid of 81� 91

nodes for Pr � 6. The grid is made ®ner near the top

and the sphere walls to account for the high velocity

gradient at the top and the boundary layers. The

numerical results obtained by Garg [6] compare very

well with the ones obtained by the present model, with a

maximum error of 1%. Correlation (24) tends to un-

derestimate the Nusselt number by 13% for Pr � 0.7

and slightly overestimate the Nusselt number by 5% for

Pr � 6 with respect to the prediction of the present

model. This di�erence is within the accuracy of the

correlation, which may be due to the error involved in

estimating the coe�cient c based on the experimental

data.

7. Results and discussion

The numerical results are presented for the case,

where the exterior dome wall is hotter than the interior

one and air ®lls the gap between them (Pr � 0.72).

Under these conditions, the ¯ow is stable and reaches

the steady state independently of the initial conditions.

The case of the interior dome wall is hotter than the

exterior one yields unsteady, periodic ¯ow, particularly

for small values of the gap spacing. The latter case will

not be presented in this paper. Typical thermal ®eld and

¯ow pattern within the enclosure as well as heat transfer

through the enclosure will be presented. Practical cor-

relations for the heat transfer will be developed for dif-

ferent dome shapes.

The ¯ow domain is discretised using a uniform mesh

size along the circumferencial direction and a non-uni-

form mesh size along the radial direction. The mesh size

along the radial direction is made ®ner near the dome

walls and coarser at the middle. A grid of 41 (r-direc-

tion) � 51 (h-direction) nodes is found to produce ad-

equate results for the whole range of the pertinent

parameters. For example, for h0 � 90°, d � 0.1 and

Table 1

Comparison of Nusselt numbers for d � 1

�ÿRa� Present model Garg [6] Eq. (24)

Pr � 0:7
1000 1.100 1.1006 1.00

3000 1.420 1.4213 1.261

6300 1.737 1.7393 1.518

10 500 1.980 1.9848 1.7248

14 000 2.127 2.1331 1.8534

21 000 2.345 2.356 2.0511

42 000 2.760 2.7761 2.4392

91 000 3.283 3.311 2.9594

Pr � 6

1500 1.195 1.1958 1.2531

3000 1.448 1.4489 1.4902

18 000 2.360 2.3633 2.3323

45 000 2.914 2.9237 2.9237

90 000 3.408 3.4237 3.4877

180 000 4.005 4.0256 4.1476

360 000 4.721 4.7474 4.9323
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Gr � 105, a grid of 61� 61 yields Nu � 2.492 while the

grid of 41� 51 yields Nu � 2.488.

Fig. 3 shows the streamlines and isotherms for fully

hemispheric domes h0 � 90° with air spacings d � 0.1

and 0.5. The Grashof number is ®xed at Gr � 5� 105.

The ®gure reveals that the air moves upwards near the

hot wall and downwards at the top and near the cold

wall. Heat is thus transported from the hot wall to the

cold wall. As a result, the air in the boundary layer near

the cold wall is as hot as the that near the hot wall,

particularly for air spacings of the same order of mag-

nitude of the boundary layer spacing (e.g., d � 0.1). The

air ¯ow at the top of the dome is relatively weak and

results in temperature strati®cation. The temperature

strati®cation is more pronounced and extends to the

middle of the gap for large spacings (e.g., d � 0.5). The

heat transfer from the dome to the surroundings is

consequently reduced.

Fig. 4 shows the streamlines and isotherms for low

pro®le domes h0 � 45° with spacings d � 0.1 and 0.5.

The Grashof number is ®xed at Gr � 5� 105. For small

spacings d � 0.1, the air moves in the boundary layer

near the dome walls, forming one cell throughout the

domain. Heat is thus transported from the hot wall to

the cold wall and results in an air near the cold wall

as hot as that near the hot wall. However, for large

spacings d � 0.5, the ¯ow pattern shows a separation

of the boundary layers at the cold and hot walls from

each other. As a result, two cells, one on top of the

other, are formed near each wall at the bottom of the

dome. In both small and large spacings, the isotherms

show temperature strati®cation at the top. This tem-

perature strati®cation is more pronounced for large

spacings and results in a lower heat transfer to the

environment.

Figs. 5±7 show the variation of the Nusselt number as

a function of the parameter (Ra�)1=4 for fully hemi-

Fig. 3. Isotherms and streamlines for fully hemispheric domes

(h0 � 90°) at Gr � 5� 105.

Fig. 4. Isotherms and streamlines for low pro®le domes

(h0 � 45°) at Gr � 5� 105.

Fig. 5. Nusselt number pro®le as a function of (Ra�)1=4 for fully

hemispheric domes (h0 � 90°).
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spheric domes h0 � 90° and low pro®le domes h0 � 45°
and 30°, respectively. A set of gap spacings are consid-

ered, ranging from d � 0.01 to 1. For the three dome

shapes, the variation of the Nusselt number with the

parameter (Ra�)1=4 shows a clear dependence on the gap

spacing d, contrary to concentric spheres [11]. This de-

pendence is more pronounced for low pro®le domes

than for fully hemispheric domes. For fully hemispheric

domes, the Nusselt number varies linearly with (Ra�)1=4

from the onset of convection to the convection-domi-

nated regime. However, for low pro®le domes, the

Nusselt number exhibits a linear pro®le for very small

gap spacings and a non-linear pro®le for large gap

spacings. The heat transfer from the dome to the sur-

rounding environment is thus lower for low pro®le

domes than for fully hemispheric domes.

In view of the foregoing results, the Nusselt number

may be expressed as follows:

Nu � max 1; c�Ra��d=4
n o

; �26�

where the coe�cients c and d depend on the gap spacing

d and are to be determined for each dome shape. These

coe�cients may be determined using regression tech-

niques. Using the data of Figs. 5±7 and the least-square

method, one obtains the following relations for c and d:

For h0 � 90°, d � 1, and c is given by:

c � 0:7943ÿ 0:2461d� 0:1129d2 ÿ 0:0162d3: �27�
For h0 � 45°,

c � 0:8439� 0:8375dÿ 17:7074d2 � 49:736d3

1� 2:4185dÿ 24:1328d2 � 58:2117d3
; �28�

d � 1ÿ 3:0346d� 4:1542d2

1ÿ 2:5071d� 2:27d2 � 8:349d3
: �29�

Fig. 8. Nusselt number correlations for domes with h0 � 90°,

45° and 30°.

Fig. 6. Nusselt number pro®le as a function of (Ra�)1=4 for low

pro®le domes (h0 � 45°).

Fig. 7. Nusselt number pro®le as a function of (Ra�)1=4 for low

pro®le domes (h0 � 30°).
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For h0 � 30°,

c � 0:8367ÿ 9:8836d� 50:133d2

1ÿ 9:598d� 39:6426d2 � 26:0183d3
; �30�

d � 1:0178ÿ 7:1552d� 18:6979d2

1ÿ 5:5826d� 9:3132d2 � 123:4d3
: �31�

The regression coe�cient for the Eqs. (27)±(31) is

greater than 0.99, and the maximum error involved in

estimating the coe�cients c and d is less than 1%. Eqs.

(27)±(31) are developed for the range of the Grashof

number 0 < Gr6 107. Eqs. (27)±(29) are valid for the

range 0 < d6 1, and Eqs. (30) and (31) are valid for the

range 0 < d6 0:3.

Fig. 8 shows the variation of the estimated Nusselt

numbers as a function of the parameter c(Ra�)d=4 for

dome shapes h0� 90°, 45° and 30°. For a given dome

shape, the estimated Nusselt numbers fall in the same

line from the onset of convection to the convection-

dominated regime. The maximum error in the estimated

Nusselt numbers is less than 5%.

Figs. 5±7 show that the Nusselt number increases with

the dome truncation angle h0. However, for a given

dome shape, the Nusselt number at relatively high

Rayleigh numbers increases until a maximum then de-

creases with the increase of the gap spacing d. There is a

critical gap spacing for which the heat transfer is maxi-

mum. To avoid this maximum heat transfer, the gap

spacing should be carefully chosen. Fig. 9 shows the

e�ect of the gap spacing on the Nusselt number evalu-

ated at Ra � 105 and 107 for dome shapes h0 � 90°, 45°
and 30°. For fully hemispheric domes h0 � 90°, the

Nusselt number is maximum in the range d � 0.55 to

0.60 (¯at curve), and this maximum is independent of

the Rayleigh number. However, for low pro®le domes,

the maximum Nusselt number varies with the Rayleigh

number. For the range 1056Ra6 107, the maximum

Nusselt number occurs between d � 0.1 and 0.12 for

h0 � 45°, and between d � 0.037 and 0.052 for

h0 � 30°.

8. Conclusion

The steady-state laminar natural convection within

multi-layer domes heated from the outside was investi-

gated for di�erent dome shapes. The ¯ow pattern and

temperature ®eld within the gap between layers and the

convection heat transfer were presented. Correlations

were developed for the convection heat transfer as a

function of the dome shape and the gap spacing.

The results showed that for fully hemispheric domes,

the ¯ow pattern consists of one cell throughout the

domain. However, for low pro®le domes, the ¯ow pat-

tern may consist of two cells formed near the cold and

hot walls, particularly for large gap spacing. The iso-

therms showed that temperature strati®cation occurs at

the middle of the gap and near the top, particularly for

low pro®le domes with large gap spacings. This tem-

perature strati®cation results in lower heat transfer to

the surrounding environment. The convection heat

transfer for fully hemispheric domes may reach more

than 13% higher than that for low pro®le domes

(h0 > 45°) for small gap spacings (d < 0.1) and more than

100% for large gap spacings (d > 0.3). Furthermore, the

convection heat transfer increases to a maximum value

and then decreases with the increase of the gap spacing.

The critical gap spacing that yields the maximum heat

transfer increases with the dome truncation angle. The

critical gap spacing for relatively high Rayleigh numbers

�1056Ra6 107� is the range d � 0.55±0.60 (¯at curve)

for fully hemispheric domes h0 � 90°, and varies

between 0.1 and 0.12 for domes with h0 � 45°, and

between 0.037 and 0.052 for domes with h0 � 30°.
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